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ABSTRACT

n balls are randomly distributed into N cells, so that no cell may

contain more than one ball. This process is repeated m times. In addition,

balls may disappear; such disappearances are independent and identically

Bernoulli distributed. Conditions are given under which the number of empty

cells has an asymptotically (N tii) standard normal distribution.
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SIGNIFICANCE AND EXPLANATION

Some asymptotic properties of an occupancy model which includes many

classical models as special cases are studied.

The responsibility for the wording and views expressed in this descriptive
sumary lies with NRC, and not with the authors of this report.



THE DISTRIBUTION OF THE NUMBER OF EMPTY CELLS IN A GENERALIZED

RANDOM ALLOCATION SCHEME

Bernard Harris, Morris Marden
I and C. J. Park 2

1. INTRODUCTION

The distribution of the number of empty cells in the following

random allocation process is considered. Let n, N be positive inte-

gers with n s N. Assume that n balls are randomly distributed into

N cells, so that no cell may contain more than one ball. Then, the

N -1
probability that each of n specified cells will be occupied is ( a)'-.

This process is repeated m tines, so that there are (N)m random
n

allocations of run balls among the N cells. In addition, for each

ball, let p, 0 s p s 1, be the probability that the ball will not

"disappear" from the cell. The "disappearances" are assumed to be

stochastically independent for each ball; thus the disappearances con-

stitute a sequence of nm Bernoulli trials.

Several special cases of this problem have previously been con-

sidered . In particular, p - 1, n = 1 is the classical occupancy

problem, see [2],[3],[10]. The case p = 1, n arbitrary has been

discussed in [4) and [7]. The case 0 < p < 1, n = 1 is treated in

C. J. Park [5].

In this paper, we obtain the probability distribution and moments

of the number of empty cells. In section 3, we show that the number of

Technical Report #759, Department of Statistics, University of Wisconsin-
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empty cells may be represented as a sum of independent Bernoulli ran-

dom variables. This representation permits us to determine conditions

on m, n, p, N such that the number of empty cells is asymptotically

normally distributed.

This random allocation process may be viewed as a filing or

storage process. Objects are randomly assigned to files or storage bins.

From time to time, objects may be missing or have disappeared.

-2-



2. THE PROBABILITY DISTRIBUTION AND THE MOMENTS OF THE NUMBER

OF EMPTY CELLS

Let m,n,N be positive integers with n : N. m sets, each con-

sisting of n balls, are distributed into N cells at random so that

no cell can contain more than one ball from the same set. As each set

is distributed, the balls that have been placed during the preceding

distributions are left in the cells. Thus, at the end of the process,

cells may contain as many as m balls. In addition, each ball may

"disappear" with common probability 1 - p, 0 < p : 1. These disappear-

ances are stochastically independent and thus constitute a sequence of

mn Bernoulli trials.

Let Pm,n,N,p (J) be the probability that exactly j of the N

cells are empty.

We now establish the following theorem.

Theorem 1.

N -m N Nj )I(N-JPm,n,N,p(J =n) (J - k

[J (1-p)1 (N-j.;)(J+t)]m 0 J N. ()

Proof. Let Av be the event that the vth cell is empty,

v - 1,2,o..,N. Then,

-3-



P(A )= -m (N1 
l)(l p)i]m . (2)

For 1 _ 5V < v2 - N,

P(vnva N-mC (N-2 2 ilm(3

P(A= n) (n)()(i)l-P) (3)
VIV2  fl 1=0

Thus, for 1 5 VI < v2 < < : N,

N-m k rn
P(A., nA n*** nAk= ) k (k()(1)

1=n1 0 n-i  .
. (4)

Thus, using the inclusion-exclusion method, the probability that exactly

j cells are empty is

P .r)() =N I _)r-jr)i I ()N-r (r)(lp)im .(5)

We can write (5) in the form (1) by letting r j + £.

We now deterline the factorial moments of S , the number of

empty cells.

Theorem 2. The vth factorial moment of S ,

E(S(V) N ( VM (-p)J VN-())(v) .6
J=O n- j

-4-



Proof. From J. Riordan [9], p. 53, fron (4), it follows iuiediately

that

E S(v) N )V(N )mV(N-,v)(j(_~ 7

I=0

We thus obtain the following.

Corollary. E(S) = N(1 - Pn) , (8)

N

a 2 = N(N 111(N-n)(N-n-l) + 2(1_p n N n) + (lp) n -1 ]

"S - '" " N(N-1) ff'[HN-1q )(-

+ N( - - (1 -A ) N N

Proof. From (7)

E(S) = N(N)_m(( N-l)+ (N-l)(-p))m = N(l-Pn) m .

n n n- ''= ' N

Since

jS = E(S(2))+E(S) - (E(S) )2

the conclusion follows readily from (6), after some elenentary calcula-

tions.

-5-



For some purposes, the following equivalent forms of (9) will

prove useful.

N(N-1)l - n-l m + N(I - P-")(l-N(I -Pn) M) (10)

and

2= N2 (1 .Np..) 2m np2 (N-n) 2) m 1{[N-(N-1)!,N-pn)]-1

+ N( -N m  - (1 pn m  n (N-n )2 ) (11)
N -N )  N1 ) N)(N- pn "

From Theorem 2, we readily obtain the following.

Theorem 3. The factorial moment generating function of S is given by

@m~ )  (1+) S  N -m rmS Nr N I N-r,(m m

O (t) = E(l~t) = n(r)t (n) j: -O (12)
r=O j =0

Note that *m(t) is a polynomial in t of degree N. This fact is

exploited in the next section, where the asymptotic distribution of

S is obtained. In particular,

00(t) = (l +t)N (13)

and

-6-



1(t) -- (l+t)N'-n(, + (l-p)t) n • (14)

We now investigate the asymptotic distribution properties of the

number of empty cells.

-7-



3. THE ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF EMPTY CELLS

In this section, we determine conditions under which the nuiber of

empty cells (when suitably nornalized) has an asymptotically normal distri-

bution. In order to establish this, a number of preliiinary results are

requi red.

Lemra 1. Let N,n,r be non-negative integers, r < n _< N. Then

I (r)(v)(N-r) = (r)(N- . (15)
V a n-v a n-a)

Proof. Since (v) = 0 whenever v < a , we can write
a

(r) v N-r) = r)(v N-rI ( oV))(nV )  I (v ( x )n_-)
V=a V 0

To obtain the conclusion, note that

x N-rI O N -- Ef X(00 Ya! ,
x= (n)

where X has the hypergeometric distribution. Fron B. Harris [1],

p. 105,

x n N-r) (a) (a)

I n-x r n

x- (N)-

-8-



The conclusion follows immediately.

Lemma 2.

(-l)j()(.)pj  r (l-p) (nv)(v)

I n\ v(16)
=0 N N

j)o () N)

Proof. The right-hand side of (16) may be written

r Nr r

0 (n:1)( ) (.)(-l)Jp = j=O (j .
S (N) J N

(n

Thus, the coefficient of pi is

7~ (v)(N-r)(r/ N
I j n-v n\Jj

From Lemma 1,

C)J () N-r r(N N N-j Nv~ n-v (v)n) = (-I J(r),n-j)/(n),

from which the conclusion follows immediately. Employing the above

lemmas, we can now establish the following theorem.

-9-
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and

K3 1 2 mnp
N 00 whenever mnp

The conclusion is obvious whenever N r > 0.

If c -o as N - -, then

K 2 = Ne-a + O(Ne 2a)

and

K3/2
2 -1-Go whenever 3a - log N

-21-



Proof. From (11), we can write, for a -0,

K2 = N(e')(-e-' - cpe'x) + 0(npt) +O(p2x2)

where a = Tnp Then, as a -1 0

K2 = ( 12)(N7_ p +a p) + O(Na 3) +0(mna).

Then, if p .p*f 1,

K2 = NO(l-p) + O(Na 2)

and

3/2
2 *o whenever m 4C

N N

Similarly, if (1- p) = c(Np ) + (n 0 < p <1 c >0

then

K = Nc(l -p) + o(CL(I -p))

-20-



Theorem 6. V = (S-E(S))/oS has an asymptotically standard normal

distribution as N o, whenever any of the following conditions are

satisfied.

N* .A
mp O, p - p 1and ;
• N

2. 'n 0, (l-p) 0 so that for some c > O,
N

(P) = mnpP + O((mnP)) 0 < p < 1, and

c(lNp) + cmnN 1, and

N

mn p r0 ;

* N

,mm p  ,nnn

4. 'n-N P r > O0

5. n W and Pn - log N - -,

-19-



From (29),

N M N
log **(t) * rum log(l-p) + I log(t-t I

N (Tit)k ()k

1=l k=l k

Thus,

V! Jul v

and

lKCv]I/V! 5 N Il N/v.

Then

I j 1 jl c N, (30)
Jul I'E Li. 1

since the SJx do not depend on N,nm, or p

lie now establish the following theoren.

-18-



f(x) - c(x-xl)(x-x2)...(X-XN), xl S x2 ! ... 5 xN ,

the representation follows by setting T -(t(m)) "  and noting

that E(O) =m(O) a l.

Let K= K (n,N,mp) be the cumulants of S and let K y]

be the factorial cumulants of S. That is,

logr(t) • E I[ltl
v ! •

v-I

Then

t

where 8 JA are the Stirling numbers of the second kind.

Then, as N -- ,

V -(S - E(S))/a s

is asymptotically distributed by the standard normal distribution

(mean 0, variance unity), whenever

K.I 1 2 -. 0 , .> 2-.

-17-



Proof. Let Y be a Bernoulli random variable with P{Y - I - T.

Then the factorial moment generating function of Y is

Ey((l+t) Y (l+Tt).

If

Nw = y y.,

where YY2 ""'YN are mutually independent Bernoulli random variables

with P{Yj = 1) - TV then the factorial moment generating function of

W is

W N J =N

&(t) - EW{(I+t)W I Ey {(+t)j II (l+Tt), (28)j-I j j-1

where 0 <S T. ! 1, j = 1,2,...,N. From Theorem 4, the factorial

moment generating fraction of S may be written

N

M(t) - (l-p) n  H (t-t~m) 0,I,..5 (29)

J-l

where t~m ) are real and -(1-p)
M !5 t(m ) < -1, j = 1,2,...,N.

Since every polynomial of degree N with real roots has a unique

representation of the form

-16-



The zeros of *0(t) are t(0). t0) - t(0) - -1. The zerosof €1(t1 are t 1 )  -1,...,t ( 1 ) .-1. t ( 1 )  =-/0( -. 9

I N-n 'N-n+1 "

t )"  - 1/(I-p). Now apply Lemma 3 with s(z) = 0,(z) obtaining

a - 1, b - (1-p)"1 . Then, the zeros of 02(t) are real Ond satisfy

-0l-0 - 2 :5 t( 2 ) :< -1, j , 1z2,...,N.

It then follows readily by induction that the zeros of Ok(t) are

real and satisfy

-(l-p) "k < t( k ) ! -1, j = 1,2,...,N, k = 2,3,...

Theorem 5. For 1 - n s N, 0 5 p < 1, m k 1, S has a

representation as the sum of. N mutually independent Bernoulli random

variables. That is, there exist mutually independent Bernoulli random

variables, Yj = Y (N,m,p,n), J o 1,2,...,N, such that

N
S 1 Y (26)

and

P{Yj . 1U -Y j = I - ply ) . (27)

-15-



B P' y = z:z real, -b(l-p) "1 < x ! -a(1-p)' 1 }. (25)
p O<Y<Qpy

Consequently, C u Bp is contained in the interval (21), proving

the lenma.

We now establish the following theorem.

Theorem 4. Let

n1(t) N (N)tr(N)-(
r-O j=O

Let tI "2 ,...,t,, be the zeros (not necessarily distinct) of1 2 N
Im(t).Then tm), j 1,2,...,N are all real and

t,(pf m t -1, j = 1,2,...,N;m "0,1,...

Proof. From (19).

m+1(t) - T(¢m(t)), m - 0,1,...,

and from (13),

Nolt) = (l+t) N .

-14-



That is, 1p(z (1) ZM ...*, l , M)aT4= z is a linear symmnetric

function of z~)Z() .. z(1)). Thus, the conditions of Walsh's

theorem (M. ?Iarden [5], p. 62) are satisfied. Thus, if

0 ( (02,... ) are points in Cy , then there is at least one

point C in Cy such that

T[(z*-c)N = 0

that is, one can set zl (1) (1.. Z) .C adpeev h1 2 ~ N n peev h
value 0 . From (18),

TE(z* - ) I (z*)- 0 N'n(z*  C _ pz*) n =0.

Thus either z = and therefore z is in or z ()

and z* is in

Bply = {z:lz+(c.Y)(l-p) "  _ [(c-&)' + Y  / l  . (23)

However, Y is real and arbitrary. Hence it is clear that

C n CY - {z:z real, -b ! x !5 -a) (24)
.0o<y<o

and

-13-



and

N (1
Ip(z) = T(4(z)) = cI =1N (z-z(). (20)

If the zeros of i(z) are real and satisfy

-b _<x -<-a, a,b 0O

then the zeros of £p1(Z) are real and satisfy

b 
x( 1 ) 

( 

,)
b 5-a (21)

Proof. Let

y= {z:jz+(c-IY)J < [(c-a)2+Y2) I12, c l(a+b)}. (22)

Clearly -a and -b are on the boundary of the circular region Cy.

Consequently all zeros of ?(z) are in Cy,. Let z* be a zero of

p(z). Let

-12-



I ~(- _)JCn)(pt)j DJ ) ( (, )tr I -O 0( N- r) (r
JO jr fln-a a J

N-

()n)(pt)j N r(j)tr-j  ( (l- )(r)

= - Nr"k 0) r=O =0 N
J-Oa (n)

N nIrO t r IZ (_l) J(N)( 3"r = N-r(r) )k
rz) P= -N33 (l-p) (n- )a )

(n

The conclusion now follows from Lemma 2.

Let

T(flt)) I -l,)J(n)(pt) j Dj  flt), 0 < p < 1 ( 18)

Then, from Theorem 3, we have that

=m+l(t) - T(%m(t)), 00(t) = (l+t)N .  (19)

Lemma 3. Extend the domain of T to the complex plane, letting

z = x + 4y;x,y real. Let

N
qp(z)- 1 (z-z )

-11-



Theorem 3. The factorial moment generating function of the number

of empty cells m(t) (12) satisfies the following differential-

difference equation,

fn J.)p )
Om+l(t) = I (-I) Om(t), m = 0,1,..., (17)( -0 - (j)

where DJ M dJ

Proof. For m = 0, Co(t) = (l+t)N; hence

n(-)j(n)(pt)J D (l+t)N n (l)J()(Pt)J N (J )n J
I= 1~j -- j= () (l+t)'n1+t0'J

j=0 0 ()
n

(ltN-n 1 (-lj)J( tj,+~
=00 j=O 1) (P)1~ ~ '

= (0+0)N-n l+t-pt 
no

in agreement with (14).

Assume that (17) holds for m = 1,2,...,k. Then, from (12),

-10-




